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“Anyone who is not shocked by quantum theory has not understood it.”

—Niels Bohr

3.1 THE WAVELIKE PROPERTIES OF LIGHT

It is a relatively simple matter to observe the macroscopic properties of

matter—that is to say, we can measure the mass of a mole of particles or the

volume of a gas or the density of a solid. However, if we want to observe a single

atom or something on the subatomic level, our powers of observation are limited.

At this microscopic level, we are forced to use a form of spectroscopy, which deals

with the interaction of light with matter. The wavelike properties of light have been

well-documented, beginning with the pioneering work of Christiaan Huygens in

1678. In contrast to Newton’s corpuscular theory of light, Huygens “wavelets”

could better explain certain properties of light, such as reflection, refraction, and

diffraction. For mathematical purposes, light can be considered as a sine wave,

oscillating in a plane parallel to its direction of travel. The wavelength (𝜆) of light,
measured in meters (m) is defined as the distance between successive crests on

the wave, while the frequency (𝜐) is the number of times a crest passes a fixed point

per unit time (s−1). Thus, the product of the wavelength and the frequency will be

equal to its velocity (m/s), as shown by Equation (3.1). One of the most important

properties of waves is the principle of superposition. Whenever two waves are

travelling at the same velocity and in the same direction, the amplitudes of the two

waves can be added together to create a new wave front. If the original waves have

the same amplitude initially and are exactly in phase with one another, constructive

interference will occur, leading to a new wave front having a magnitude that is twice

that of either of the originals, as shown in Figure 3.1(a). If, on the other hand, the

original waves are exactly out of phase with one another and have identical (but

opposite) amplitudes, then they will exactly cancel each other out in a process

known as destructive interference, which is shown in Figure 3.1(b). Of course, it is

also possible to mathematically add the sine waves from more than two waves
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42 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.1
(a) Constructive and
(b) destructive interference of
two in-phase light waves.
[Reproduced by permission from
Astronomy Today, McMillan and
Chaisson, 2nd ed., Prentice Hall,
1997.]
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FIGURE 3.2
The interference (or diffraction)
pattern that results when two
monochromatic beams of light
pass through a screen containing
two narrow slits and are then
observed on a parallel optical
screen some distance away from
the light source. This
experiment, which is known as
Thomas Young’s double slit
experiment, demonstrates the
wavelike nature of light.
[Reproduced from
http://en.wikibooks.org/wiki
/High_School_Chemistry/The_
Dual_Nature_of_Light (accessed
November 30, 2013).]
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together at any given time, just as it is also possible to add together waves that are

not in phase with one another or which have differing initial amplitudes.

v = 𝜐𝜆 (3.1)

In 1801, Thomas Young performed his famous double slit experiment, finally prov-

ing the wavelike nature of light. A diagram of this experiment is shown in Figure 3.2.

A beam of monochromatic light (such as that from a LASER beam) is passed through
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3.1 THE WAVELIKE PROPERTIES OF LIGHT 43

two narrow openings. As the coherent (in-phase) light waves pass through the holes,
they spread out to form a semicircular pattern of propagating wavefronts. This phe-
nomenon is completely analogous to the way that the wake from a passing boat might
spread out around a rock in the middle of an otherwise calm reservoir. In the figure,
the black concentric circles represent the crests of the wave at any given point in
time. Where the two wavefronts are in phase with one another, constructive inter-
ference occurs, leading to a larger amplitude (or bright light fringes) on an optical
screen that is parallel to the screen containing the two slits. Destructive interfer-
ence, on the other hand, occurs when the waves are exactly out of phase, causing
the amplitudes to cancel with each other and leading to nodes (or dark fringes) on
the optical screen.

In 1873, building on the work of others, James Clerk Maxwell published his
comprehensive theory of electromagnetic radiation in A Treatise on Electricity and
Magnetism. In his book, Maxwell argued that light can be thought of as a trans-
verse wave that consists of perpendicularly oscillating electric (E) and magnetic (B)
fields that each lie perpendicular to the direction of travel, as shown in Figure 3.3.
Light travelling in a vacuum travels at the speed of light, which is defined as follows:
c ≡ 2.99792458 × 108 m/s. Substituting c for v in Equation (3.1) yields the more
familiar Equation (3.2). The different types or colors of electromagnetic radiation can
be classified according to either their wavelengths or their frequencies, as shown in
Figure 3.4.

c = 𝜐𝜆 = 2.99792458 × 108 m∕s (3.2)

Example 3-1. The standard garage door opener typically operates at a

frequency of about 400 Hz (1 Hz = 1 s−1). Calculate the wavelength for this

frequency of light and identify to which region of the electromagnetic spectrum

it belongs.

Solution. Solving Equation (3.2) for the wavelength, one obtains:

𝜆 = c

𝜈
=

2.99792458 × 108 m∕s
400 (1∕s)

= 0.750 m

This wavelength falls in the microwave region of the electromagnetic

spectrum.

At Ursinus College, where I teach, there is a training drill that the football team
uses called the ropes exercise. With one end of a heavy rope affixed to the wall, the
football player swings the other end of the rope up and down, creating a transverse
wave in the rope, as shown in Figure 3.5. Initially, the wave travels from the football

Wavelength
Oscillating
charge

Propagation
direction

z

E

B

λ

FIGURE 3.3
Maxwell’s depiction of a light
wave as perpendicularly
oscillating electric (E) and
magnetic (B) fields. [Blatt
Communications.]
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44 3 A BRIEF REVIEW OF QUANTUM THEORY
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FIGURE 3.4
The electromagnetic spectrum, showing an expansion of the visible region in color. [Attributed to Philip Ronan
under the Creative Commons Attribution-Share Alike 3.0 Unported license (accessed October 17, 2013).]

FIGURE 3.5
Schematic diagram of the ropes
exercise, where one end of the
rope is fixed while the football
player initiates a transverse wave
in the rope by an up-and-down
motion. [Blatt Communications.]

First wave

Second wave

Resultant actual displacement of string
at this instant in the time

Start of the
third wave

FIGURE 3.6
An example of a standing wave
such as the one produced when
a guitar string is plucked. [Blatt
Communications.]

Nodes

Standing wave oscillating in time

player in the direction of the wall, where it is then reflected. As the wave returns

toward the football player, it encounters another wave (which may or may not be in

phase with the original wave) and the two waves interfere with one another.

Now suppose instead of fixing just one end of the rope, a lighter string is used

where both ends of the rope are fixed. This phenomenon occurs across campus

in the music department whenever a musician plucks a guitar string or creates a

vibration in the string of a violin. This creates an entirely different kind of wave than

the ropes drill. Once the initial perturbation is introduced into the string, creating

amplitude along the y-direction, for instance, the string will begin to oscillate at a

characteristic frequency, as shown in Figure 3.6.
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3.1 THE WAVELIKE PROPERTIES OF LIGHT 45

In order to sustain the note and to create music, only those wavelengths that
have an amplitude of zero at both ends of the fixed string can constructively interfere
with one another to create what is known as a standing wave. A standing wave (also
called a stationary wave) is a wave that exists in a fixed position. Although the standing
wave appears to be stationary, it is actually oscillating up and down in place as a
function of time. Therefore, the amplitude of the wave (y) is a function of its position
(x) and time (t), as shown in Equation (3.3). This is the classical wave equation in
one-dimension (see Appendix A for a derivation).

𝜕2y

𝜕x2
= 1

v2

𝜕2y

𝜕t2
(3.3)

The wave equation is a linear, second-order partial differential equation. While
the solution to this type of differential equation is not particularly difficult, it might
present a challenge for the average student taking inorganic chemistry. Therefore, a
general solution is presented and it is left as an exercise to demonstrate the validity
of this result. One possible solution to the one-dimensional wave equation is the
sine wave given by Equation (3.4), where A is the maximum amplitude of the wave.

y(x, t) = A sin
[
2π

(
x

𝜆
− 𝜈t

)]
(3.4)

Example 3-2. Prove that Equation (3.4) is a solution to the one-dimensional

classical wave equation given in Equation (3.3).

Solution. Taking the first partial derivative of y with respect to x and t yields

the following:

𝜕y

𝜕x
= 2π

𝜆
A cos

[
2π

(
x

𝜆
− 𝜈t

)]
𝜕y

𝜕t
= −2π𝜈 A cos

[
2π

(
x

𝜆
− 𝜈t

)]
Now, taking the second partial derivative of y with respect to x and t yields:

𝜕2y

𝜕x2
= −

(
2π
𝜆

)2

A sin
[
2π

(
x

𝜆
− 𝜈t

)]
= −

(
2π
𝜆

)2

y(x, t)

𝜕2y

𝜕t2
= −(2π𝜈)2 A sin

[
2π

(
x

𝜆
− 𝜈t

)]
= −(2π𝜈)2 y(x, t)

Operators such as this that yield back the original function times a constant

are called eigenfunctions and the corresponding constants are known as the eigen-

values. You will find that most of the operators in quantum mechanics will be

of this type. Substituting the second partial derivatives into Equation (3.3) and

cancelling the signs yields(
2π
𝜆

)2

y(x, t) = 1

v2
(2π𝜈)2 y(x, t)

which reduces to
1

𝜆2
= 𝜈2

v2

Taking the square root of both sides yields the equality given by

Equation (3.1).
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46 3 A BRIEF REVIEW OF QUANTUM THEORY

By introducing the constraint that the amplitude of the wave must be zero at

both ends of the string in order to have constructive interference, we have imposed

a set of boundary conditions on the mathematical problem, namely, that y(0, t) = y(L,

t) = 0 at any value of t, where L is the length of the string. Because this must be

true for any value of t, we can arbitrarily set t = 0 to simplify the math, so that A

sin(0) = A sin(2𝜋L/𝜆) = 0. Ignoring the trivial solution that A = 0 and recognizing

that sin(n𝜋) = 0 whenever n is an integer, we obtain the result that 𝜆=2L/n. As
this example demonstrates, the concept of quantization (integral values of n) arises

naturally whenever we force the ends of the string to be fixed in place. Several

of the standing wave solutions for different values of n are depicted in Figure 3.7.

One feature that is common to all of the solutions is the presence of nodes (where

the amplitude is always zero) and the presence of antinodes (where the amplitude

reaches its maximum value).

The lowest frequency occurs when n = 1 and is called the fundamental. Doubling

the frequency corresponds to raising the pitch by an octave. Those solutions having

values of n > 1 are known as the overtones. As mentioned previously, one important

property of waves is the concept of superposition. Mathematically, it can be shown

that any periodic function that is subject to the same boundary conditions can be

represented by some linear combination of the fundamental and its overtone fre-

quencies, as shown in Figure 3.8. In fact, this type of mathematical analysis is known

as a Fourier series. Thus, while the note middle-A on a clarinet, violin, and piano all

have the same fundamental frequency of 440 Hz, the sound (or timbre) that the

different instruments produce will be distinct, as shown in Figure 3.9.

If electromagnetic radiation can be considered a wave, then what exactly is it

that is doing the waving? Imagine a cork bobbing up and down on the surface of

a reservoir as a result of the wave from a passing boat. To a first approximation,

the cork will not change its longitudinal or latitudinal position. It will simply oscillate

up and down in position as the wavefront passes by. Now, imagine the opposite

scenario, where a cork is forced to oscillate in a periodic manner on the surface of a

smooth body of water. The periodic motion of the cork will lead to the generation

of waves in the liquid. By analogy, light can be produced by an oscillating charge, such

as an electron (or for that matter any charged particle) being accelerated back and

forth between two poles (e.g., in a radio transmission tower).

FIGURE 3.7
Several solutions to the wave
equation subject to the
boundary conditions for a
standing wave that y(0,t) = y(L,t)
= 0. [Blatt Communications.]
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3.1 THE WAVELIKE PROPERTIES OF LIGHT 47
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FIGURE 3.8
A composite periodic waveform
can be constructed from a linear
combination of the fundamental
and its overtones (or partials).
[Blatt Communications.]
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FIGURE 3.9
Illustration of how the timbre of
different musical instruments
playing the same note can
produce distinctly different
sounds depending on the exact
combination of the fundamental
and its overtones. [Blatt
Communications.]

Now suppose that a cork was floating peacefully on the surface of a perfectly

smooth body of water. Then along comes the wake from a passing motorboat. What

will happen? The cork will begin to oscillate up and down in a periodic manner as

the wavefronts from the motorboat pass by in the water underneath it. In a similar

manner, the interaction of light with matter can cause oscillations of the charged

particles within the substance. Low-frequency radiation, such as infrared light, can

cause the positions of the atoms in molecules to vibrate, whereas high-frequency

radiation, such as ultraviolet light, can effect electronic transitions or even ionization.

Therefore, the different regions of the electromagnetic spectrum can be used to

probe various aspects of a molecule’s fundamental structure. This serves as the basis

for the field of atomic and molecular spectroscopy.
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48 3 A BRIEF REVIEW OF QUANTUM THEORY

3.2 PROBLEMS WITH THE CLASSICAL MODEL
OF THE ATOM

The quantization of matter has been generally accepted as fact since John Dalton’s

atomic theory was published in 1808. Dalton’s theory of the atom consisted of four

fundamental axioms:

• Matter is composed of tiny, indivisible particles called atoms. Although it is

now recognized that the atom is itself composed of smaller subatomic

particles, this fact does little to change the essence of Dalton’s original

statement.

• Elements can be distinguished from one another based on the masses of their

atoms. This statement is also incorrect, because isotopes with different mass

numbers often exist for the same element. An element is now characterized

by the number of protons it contains in its nucleus.

• Atoms can neither be created, nor destroyed. This assertion is also false, because

the transformation of one element into another is a regular occurrence in

nuclear chemistry.

• When the elements combine in a chemical reaction, they do so in small,

whole-number ratios. This final point is simply a restatement of Proust’s law of

definite proportions.

The importance of Dalton’s work is that it was based on the scientific method.

Dalton realized that air and evaporated water consisted of fundamentally different

gases; and it was his experiments using mixtures of gases that led him to the conclu-

sion that the gases themselves must be composed of particles having different sizes.

In other words, matter must be quantized—composed of small, individual particles

having definite sizes and masses.

It was not until a century later, however, that energy was first considered to

be quantized. On December 14, 1900, Max Planck delivered his landmark address

at a meeting of the German Physical Society where he suggested that the spectral

distribution of blackbody radiation could only be explained if matter absorbs and

emits energy in discrete amounts. It had long been recognized that certain metallic

objects, when heated, radiated light having a characteristic spectrum, such as the one

shown in Figure 3.10. Furthermore, the exact distribution of wavelengths radiated by

the heated object depended on its temperature. As the temperature increases, the

wavelength having the largest intensity gradually shifts from longer (red) to shorter

(blue) wavelengths. Strictly speaking, a blackbody is an idealized object that can per-

fectly absorb and emit radiation of all frequencies. One of the closest real-world

approximations to a blackbody radiator is a star. The spectral distribution (intensity

vs wavelength profile) of a star is analogous to that of an ideal blackbody, with the

wavelength of its maximum intensity decreasing with increasing temperature. This

explains why a cooler star (∼3000 K) has a red appearance, while the hottest of

stars (>5000 K) are blue, as shown in Figure 3.10.

The distribution curve for a blackbody that is predicted by classical physics is also

shown in Figure 3.10. This curve is based on the Rayleigh–Jeans law, which is given

by Equation (3.5), where 𝜌 is the energy density per frequency (proportional to the

intensity axis shown in Figure 3.10), kB is the Boltzmann constant (kB = R/NA = 1.381

× 10−23 J/K), and T is the absolute temperature (K). At long wavelengths, there is a

fairly good agreement between the experimental and predicted distribution curves

for a blackbody having T = 5000 K. However, at shorter wavelengths, the classical

prediction clearly deviates from observation. Because this deviation begins to occur

at wavelengths that fall in the ultraviolet range of the electromagnetic spectrum, this
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FIGURE 3.10
The spectral distribution of
radiation as a function of
wavelength for three different
temperature stars. A star is one
of the closest approximations to
a perfect blackbody radiator.
[Reproduced from
http://en.wikipedia.org/wiki
/Black-body_radiation (accessed
October 17, 2013).]

FIGURE 3.11
Analogy of a perfect blackbody
with a hollow metal cavity
having a tiny pinhole. [Blatt
Communications.]

shortcoming of classical theory is often referred to as the UV catastrophe.

𝜌𝜈 (T) d𝜈 =
8π𝜈2kBT

c3
d𝜈 (3.5)

According to classical mechanics, the absorption of heat by a metal object

leads to an increase in the kinetic energy of its constituent atoms. As the energy

is absorbed, it causes the electrons and charged nuclei in the solid to oscillate back

and forth with characteristic frequencies. To a first approximation, an idealized black-

body will behave like a hollow cavity with a small pinhole in it, as the one depicted

in Figure 3.11. When the object is heated or absorbs electromagnetic radiation,

the total energy is forced to equilibrate inside the cavity before any radiation can

be emitted through the pinhole in the form of light. As was shown in Section 3.1,

the boundary conditions for constructive interference of standing waves in a cavity
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50 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.12
Illustration of how the number
of allowed oscillators increases
as the wavelength decreases.
[Blatt Communications.]
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of diameter L requires that 𝜆 = 2L/n, where n is a positive integer. Thus, only cer-

tain wavelengths of oscillations may exist as standing waves. The wavelengths and

shapes of the allowed standing waves are therefore the same as those shown in

Figure 3.7. Because of the inverse relationship between 𝜆 and n, the probability den-

sity of allowed oscillations increases at shorter wavelengths, as shown in Figure 3.12,

where a = L. Classical physics predicted that the total energy absorbed by all the

vibrations of the charged particles inside a blackbody would be equally distributed

over all of the allowed oscillators. This is known as the equipartition of energy. In

other words, there were no special rules imparted to make some of the oscillations

more favorable than others. Thus, the intensity of the electromagnetic radiation

emitted through the pinhole would necessarily increase at shorter and shorter wave-

lengths, simply because there is a higher density of allowed wavelengths at shorter

wavelengths.

Planck overcame this limitation by postulating that the energies of the oscilla-

tions could only exist in discrete amounts, with the energy (E) of a given oscillation

being directly proportional to its frequency, according to Equation (3.6), where h

is Planck’s constant (h = 6.6261 × 10−34 J s). Borrowing from the statistical work

of Boltzmann, those oscillators requiring more energy to vibrate would necessarily

have a lower probability of occurrence. Because frequency (𝜐) and wavelength (𝜆) are
inversely proportional to each other through Equation (3.2), the shorter the wave-

length, the less probable would be its occurrence. Therefore, even though there is

still a higher density of oscillators having short wavelengths, the probability that these

short-wavelength oscillators will absorb enough energy to be populated will eventu-

ally begin to decrease. The bottom line is that the results of the Planck distribution

law, which is given by Equation (3.7), perfectly match those of the experimental

curve!

E = h𝜐 (3.6)

𝜌𝜈 (T) d𝜈 =
8πhkBT
c3

𝜈3d𝜈

eh𝜈∕kBT − 1
(3.7)

The essential mathematical substitution made by Planck was the recognition that

the energy differences between the allowed oscillations in the solid were quantized,

as shown in Figure 3.13. As a result, there were certain rules that had to be intro-

duced in order to govern how much of the total energy a specific oscillator was able

to absorb. Another way of thinking about the distribution problem is to consider an

old-fashioned coin scramble. Suppose that there is a total of $9.00 worth of coins

(a certain total amount of absorbed energy) to distribute among three very eager

children (three of the allowed standing waves or oscillators in Figure 3.13). There are

$3.00 worth of quarters (12 quarters), $3.00 worth of nickels (60 nickels), and $3.00

worth of pennies (300 pennies). In the absence of any special rules (no quantization

of energy), each of the children will pick up exactly 4 quarters, 20 nickels, and 100

pennies for a total of $3.00 each. This is the classical analogy to the equipartition of

energy—each of the children (oscillators) acquired the same total amount of money

(energy). Next, the coin scramble is repeated; but as the organizer, Planck imposes
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FIGURE 3.13
Energy level diagram for the
different allowed vibrations of
an oscillating string, showing
how the energy increases with n.
According to Boltzmann’s
statistical population theorem,
low-frequency oscillations will
be populated (or occur) more
often than higher frequency
ones. [Blatt Communications.]

some rules on the game: the first child is not picky and can pick up any denomina-

tion of currency, but the second child is a little more discerning and refuses to bend

over to pick up any pennies, and finally the third child comes from an exceedingly

snobbish background and will only stoop to pick up quarters.

The final results of this second coin scramble are given in Table 3.1. Notice

that the rules (or quantum restrictions) that Planck placed on the coin scramble

led to an unequal distribution of wealth among the three participants. The restric-

tion that the third child could only acquire the largest denomination of currency led

him/her to a smaller take of the total amount of money, just as those oscillators that

required a larger quantum jump were less populated in the equilibrium distribution of

energy. As it turns out, these are the oscillations with smaller wavelengths; and there-

fore the intensity profile of Planck’s distribution curve follows the Rayleigh–Jeans

law at longer wavelengths, but then curves back downward as the wavelength gets

shorter.

At first, the implications of the quantization of energy were not fully appreciated.

Planck himself was reluctant to accept the concept, convinced that it was merely a

mathematical coincidence and that a more satisfactory classical description would

eventually replace it. Quoting Banesh Hoffmann in The Strange Story of the Quantum,

the scientists “could but make the best of it, and went around with woebegone

faces sadly complaining that on Mondays, Wednesdays, and Fridays they must look

on light as a wave: on Tuesday, Thursdays, and Saturdays as a particle. On Sundays,

they simply prayed.”

It was not until 5 years later (in 1905) when Albert Einstein explained the pho-

toelectric effect that the concept of quantization looked as if it had any real staying

TABLE 3.1 Results of the coin scramble with and without Planck’s special rules.

Equal Chance (No Rules) Planck’s Rules
Distribution of coins: #1 #2 #3 #1 #2 #3

Pennies 100 100 100 300 0 0
Nickels 20 20 20 30 30 0
Quarters 4 4 4 4 4 4
Total amount ($) 3.00 3.00 3.00 5.50 2.50 1.00
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52 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.14
The photoelectric effect: light
striking a metal surface in an
evacuated chamber can eject
electrons from the metal if the
frequency of the light is greater
than the work function for the
metal. [Blatt Communications.]

Light

Vacuum

+–

A

Ejected electrons

power. In 1887, Heinrich Hertz had observed that UV light can eject electrons from

a metal plate in a partially evacuated tube (Figure 3.14). There were three major

observations associated with this phenomenon. (i) While the kinetic energy of the

ejected electrons depended on the frequency, the number of ejected electrons was

dependent on the intensity of the light. (ii) There was a certain threshold frequency,

characteristic of the metal, below which no electrons at all would be ejected, regard-

less of the intensity of the light, as shown in Figure 3.15. (iii) There was no lag time

between the time the light struck the metal plate and the time that the electrons

were ejected. Each of these observations was in direct conflict with the predictions

of classical theory. Because the intensity of light (according to Maxwell’s equations)

is proportional to the square of the amplitude of its electric field, the classical pre-

diction was that the kinetic energy of the electrons should depend on the intensity

of the light, not on its frequency. Furthermore, before an electron could be ejected,

it was expected that a sufficient amount of energy must be accumulated in order to

overcome the surface potential and yet no lag time was observed. Lastly, there was

no classical explanation for the threshold energy.

Only by assuming that light behaved as packets of energy did could Einstein

explain the experimental data. Einstein originally called these quanta, while the mod-

ern term for them is photons. Furthermore, the energy of each photon was directly

related to its frequency through the same proportionality constant, h, that Planck had

used in his explanation of blackbody radiation. Only those photons having sufficient

energy to overcome the work function (𝜙) of the metal (or its ionization energy)

would be capable of ejecting an electron. The kinetic energy (KE) of the ejected

electron was therefore dependent on the frequency of the photon, as shown by

Equation (3.8). The number of ejected electrons, in turn, depended on the intensity

FIGURE 3.15
The photoelectric effect illustrated
for potassium metal in a partially
evacuated tube. The work function
required for the ejection of electrons
from a potassium surface is 2.0 eV.
Therefore, a photon of red light (h𝜈
= 1.77 eV) does not have sufficient
energy to eject an electron. Photons
of green or blue light, which have
energies greater than 2 eV, can both
eject electrons; but the kinetic
energies of the ejected electrons will
differ. [Blatt Communications.]

700 nm
1.77 eV

K metal plate with ϕ = 2.0 eV

No
electrons

550 nm
2.25 eV

400 nm
3.1 eVV

max
 = 2.96 × 105 m/s

V
max

 = 6.22 × 105 m/s
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3.2 PROBLEMS WITH THE CLASSICAL MODEL OF THE ATOM 53

of light, or the number of photons striking the metal surface. Thus, for every pho-

ton striking the surface (as long as h𝜈 > 𝜙), one electron would be ejected. In other

words, energy (in the form of electromagnetic radiation) can be considered to have

particle-like properties.

KE = h𝜈 − 𝜙 (3.8)

Example 3-3. Potassium has a work function, 𝜙 = 2.0 eV. Calculate the veloc-

ity of an electron ejected from potassium using blue light with a wavelength of

400 nm.

Solution. The energy of a photon of blue light is directly proportional to its

frequency. Combination of Equations (3.6) and (3.2) yields

E = hc

𝜆
=

(6.6261 × 10−34 Js)(2.998 × 108 m∕s)
(400 nm)(1 m∕109 nm)

= 4.97 × 10−19 J

Given that 1 eV = 96,485 J/mol and NA = 6.022 × 1023 mol−1:

E = 4.97 × 10−19 J

(
1 eV

96, 485 J∕mol

)
(6.02 × 1023mol−1) = 3.10 eV

Using Equation (3.8), the kinetic energy of the ejected electron is

KE = h𝜈 − 𝜙 = 3.10 eV − 2.0 eV = 1.1 eV

KE = 1.1 eV

(
96, 485 J∕mol

1 eV

)(
1 mol

6.022 x1023

)
= 1.8 × 10−19 J

Because KE = (1/2)mv2, rearrangement to solve for v yields

𝜈 =

√
2KE

me

=

√
2(1.8 × 10−19 J)
9.11 × 0−31 kg

= 6.2 × 105 m∕s

The first model of the atom to include the concept of quantization was proposed

by Niels Bohr in 1913. Before this time, the prevailing notion was that the atom

consisted of a dense, positively charged nucleus, about which the electrons orbited

much like the planets orbit around the sun. One of the inherent contradictions with

the planetary model was that the negatively charged electrons should undergo a con-

stant acceleration by virtue of their electrostatic attraction to the nucleus. At the

same time, Maxwell’s theory of electromagnetism requires that any charged particle

undergoing acceleration must continuously emit light. In fact, classical calculations

predicted that the electron in a hydrogen atom should rapidly collapse into the

nucleus in a matter of several nanoseconds. This, of course, does not occur. Further-

more, the gradual loss of energy as the electron’s orbit spirals in closer and closer

to the nucleus should lead to an emission spectrum that resembles a continuum of

many different wavelengths.

In fact, it had been known for several decades that when certain metal cations

are heated in a Bunsen burner, they will emit light of a characteristic color. These

are the common flame tests of a qualitative general chemistry laboratory and

that form the basis for the different colors in fireworks. For instance, Li+ and
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54 3 A BRIEF REVIEW OF QUANTUM THEORY

Sr2+ are red, Na+ is yellow-orange, and Ba2+ is green. Instead of a continuum,

as would have been predicted by classical theory, each ion emitted light with a

characteristic fingerprint of narrow wavelengths (or lines) when passed through a

prism. The line spectrum of hydrogen was well established at the time and is shown

in Figure 3.16. In 1885, a Swiss math teacher named Johann Balmer noticed the

mathematical pattern in the spectral lines of hydrogen in the visible spectrum and

derived an empirical equation to explain them. Then, in 1888, the Swedish physicist

Johannes Rydberg generalized the Balmer equation to include several other series

of lines that were discovered in the UV and near-IR regions of the hydrogen line

spectrum (shown in Figure 3.17). The Rydberg formula, shown in Equation (3.9),

can be used to calculate the wavenumber (1/𝜆) of any line in the emission spectrum

of hydrogen, where RH is the Rydberg constant and nf and ni are both positive

integers (with nf < ni). Each series of lines converges at short wavelengths on

what is known as the series limit. Because the series limit occurs at the shortest

wavelength in each series (or the largest wavenumber), the value of ni for the

FIGURE 3.16
The line spectrum of hydrogen
in the visible region.
[Reproduced from
http://en.wikipedia.org/wiki
/Hydrogen_spectral_series
(accessed November 30, 2013).]

FIGURE 3.17
The complete line spectrum of
hydrogen from the ultraviolet to
the infrared. Transitions from
the ni = ∞ energy level to the
lowest energy level in each series
correspond with the series limit,
where the individual energy
levels all start to blur together.
[Blatt Communications.]
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Lyman series

Ultraviolet Visible Infrared
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3.3 THE BOHR MODEL OF THE ATOM 55

series limit is always taken as infinity. While mathematically convenient, the Rydberg

equation was entirely an empirical equation in desperate need of a more theoretical

explanation.

𝜈 = 1

𝜆
= RH

(
1

n2
f

− 1

n2
i

)
, where RH = 109, 678cm−1 and nf < ni (3.9)

Example 3-4. Calculate the wavelengths (nm) of the five lines shown in

Figure 3.16 for the line spectrum of hydrogen if nf = 2 for the Balmer series.

Solution. Using Equation (3.9) with nf = 2 and ni = 3, the wavenumber of the

red line in the Balmer series is determined to be 1.52 × 104 cm−1:

𝜈 = 1

𝜆
= 109, 678cm−1

(
1

22
− 1

32

)
= 1.52 × 104 cm−1

The wavelength of this line is obtained by taking the reciprocal of the

wavenumber and then converting from cm into nm, as follows:

𝜆 = 1

𝜈
= 1

1.52 × 104 cm−1 = 6.56 × 10−5 cm
(

1 m

100 cm

) (
109 nm

1 m

)
= 656 nm

Using ni = 4, 5, 6, and 7, the resulting wavelengths for the remaining lines

are 486, 434, 410, and 397 nm, respectively.

Example 3-5. The wavelength of the series limit for the Pfund series of lines in

the hydrogen spectrum is 2.28 μm. Determine nf for the Pfund series and then

calculate the longest wavelength line for this series.

Solution. Because ni = ∞ for the series limit, the second term in parentheses

in Equation (3.9) approaches zero.

1

𝜆
= 109, 678cm−1

n2
f

= 1

2.28 μm

(
106μm
1m

)(
1 m

100 cm

)
= 4390cm−1

n2
f
= 109, 678cm−1

4390cm−1 = 25 so nf = 5

3.3 THE BOHR MODEL OF THE ATOM

In the summer of 1912, Niels Bohr wrote to his younger brother Harald: “Perhaps I

have found out a little about the structure of atoms.” His revolutionary model of the

atom was published the following year. In an attempt to develop a theoretical model

of the hydrogen atom that was consistent with the lines predicted by the Rydberg

formula, Bohr proposed the following:

• The electron moves around the nucleus in circular orbits, where the

centripetal and centrifugal forces are exactly balanced. The centrifugal force

results from the electrostatic attraction of the negatively charged electron

for the positively charged proton in the nucleus and can be calculated

according to Coulomb’s law. The electron’s centripetal motion is governed
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56 3 A BRIEF REVIEW OF QUANTUM THEORY

by Newton’s second law. The two forces are set equal in Equation (3.10),
where F is the force, e is the electronic charge = 1.602 × 10−19 C, r is the
radius, 4𝜋𝜀0 is the permittivity of free space = 1.113 × 10−12 C2/Nm2, and r
is the radius of the orbit.

F = e2

4π𝜀0 r2
= ma = mv2

r

(Coulomb’s law) (Newton’s 2nd law) (3.10)

• The stationary state assumption: In a given orbit, the total energy (kinetic +
potential) will be a constant. The kinetic energy KE is equal to (1/2)mv2, while
the potential energy V can be obtained by integrating Coulomb’s law with
respect to distance. While this assumption was in opposition to the classical
prediction that the electron will spiral into the nucleus, it was necessary in
order to explain the experimental observations.

E = KE + V = 1

2
mv2 + ∫

e2

4π𝜀2
0
r2
dr = 1

2
mv2 − e2

4π𝜀2
0
r

(3.11)

Given the equality in Equation (3.11), followed by substitution from
Equation (3.10) yields

E = 1

2
mv2 − mv2 = − e2

8π𝜀0r
(3.12)

• The quantum restriction postulate: Only certain quantized orbits will be allowed.
These orbits are restricted to the condition where the angular momentum
(l) is an integral multiple of h/2𝜋:

l = mvr = nh

2π
, where n = 1, 2, 3, … (3.13)

Solving Equation (3.12) for mvr and setting it equal to Equation (3.13) yields

mvr = e2

4π𝜀0v
= nh

2π
(3.14)

Solving Equation (3.14) for v and substituting for E in Equation (3.12) yields

v = 2πe2
4π𝜀0 nh

(3.15)

E = −1

2
mv2 = − 2π2me4

(4π𝜀0)2n2h2
(3.16)

• When an electron jumps from a higher to a lower energy orbit, the energy
difference (ΔE) will be emitted as a photon:

E = Ei − Ef =
2π2me4
(4π𝜀0)2h2

(
1

n2
f

− 1

n2
i

)
(3.17)

Substituting e = 1.602 × 10−19 C, me = 9.109 × 10−31 kg, 4𝜋𝜀0 = 1.113 ×
10−10 C2/J⋅m, and h = 6.626 × 10−34 J⋅s, one obtains a value of 2.178 × 10−18

J for R∞.

• It is impossible to describe the electron when it is in between the stationary
state orbits.
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3.3 THE BOHR MODEL OF THE ATOM 57

Example 3-6. Prove that Equation (3.17) is just another way of stating the Ryd-

berg formula given in Equation (3.9).

Solution. Combining Equation (3.17) with the Planck formula ΔE = h𝜈:

1

𝜆
= 𝜈

c
= ΔE

hc
=

2.178 × 10−18 J

(6.626 × 10−34 J ⋅ s)(2.998 × 108 m∕s)

(
1

n2
f

− 1

n2
i

)
1

𝜆
= 1.096 × 107

1

m

(
1 m

100 cm

)
= 1.096 × 105 cm−1

This result is consistent with the Rydberg formula to the number of signifi-

cant figures presented.

Using the circular orbits of the Bohr model, the meaning of the subscripts in
the quantum numbers nf and ni now become obvious: ni is the initial Bohr orbit (the
one farther from the nucleus, or the excited state) and nf is the final Bohr orbit, as
shown in Figure 3.18. The following values of nf correspond with the listed series:
nf = 1 (Lyman), nf = 2 (Balmer), nf = 3 (Paschen), nf = 4 (Brackett), and nf = 5 (Pfund).
Thus, for example, the first four lines for the Balmer series originate in the ni = 3,
4, 5, and 6 energy levels and terminate in the nf = 2 level, as shown in Figure 3.18.

The actual radius of a Bohr orbit can be calculated by solving Equation (3.12) for
r and substituting the value of E given by Equation (3.17), as shown in Equation (3.18).
Defining the first Bohr radius (n = 1) as a0, the other allowed orbital radii therefore
go as a0 n

2, as shown in Figure 3.19.

r = − e2

8π𝜀0 E
=

4π𝜀0 n2h2

4π2me2
(3.18)

Example 3-7. Prove that a0 = 52.9 pm.

Solution. According to Equation (3.18), a0 =
(1.113×10−10C2∕Jm)(6.626x10−34 J⋅s)2

4(3.1416)2(9.109×10−31 kg)(1.602x10−19 C)2
= 5.29 × 10−11 m = 52.9 pm

n = 1

n = 2

n = 3

n = 4

n = 5

1094 nm

1282 nm

434 nm
486 nm656 nm1

2
2
 n

m 10
3 

nm

97 n
m

95 n
m

94 nm

410 nm
1875 nm

n = 6

Paschen series

Balmer series

Lyman series

FIGURE 3.18
According to the Bohr model of
the atom, the lines in the
emission spectrum of hydrogen
result from transitions between
stationary orbits that exhibit
quantization of angular
momentum. The first several
transitions and their
corresponding wavelengths are
shown for each series of lines in
the line spectrum of hydrogen.
[Attributed to Szdori,
reproduced from
http://en.wikipedia.org/wiki
/Hydrogen_spectral_series
(accessed November 30, 2013).]
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58 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.19
The allowed orbital radii in the
Bohr model of the atom. [Blatt
Communications.]

n = 1

Bohr orbits

n = 2

n = 3

16a0

9a0

4a0

a0

–e

+e

n = 4

The Bohr model of the atom was well received by the scientific community.

Although the theory could only explain the line spectrum of hydrogen and none

of the other elements, it is nevertheless important because it was the first the-

oretical model of the atom to incorporate the concept of quantization. Various

modifications were proposed by Sommerfeld and others in an attempt to reconcile

the Bohr model with elements other than hydrogen. They did this by accounting

for the fact that the electron and nucleus each revolve around a common cen-

ter of mass, including a correction for the increased nuclear charge, and extending

the theory to include elliptical orbits having a second quantum number. However,

despite these improvements, the Bohr model could never fully explain the fine struc-

ture observed in the line spectra of certain elements. Although Bohr’s stationary

state and quantum restriction postulates flew right in the face of classical mechan-

ics, the ultimate test of any revolutionary model is its ability to marry theory with

experiment.

3.4 IMPLICATIONS OF WAVE-PARTICLE DUALITY

In 1924, the French aristocrat Louis de Broglie reasoned that if light can exhibit

wave-particle duality, maybe matter can as well. By combining Einstein’s equation

for relativity (Eq. 3.19) with Planck’s equation (Eq. 3.6), de Broglie derived the sim-

ple relationship in Equation (3.20). As the momentum is p = mv, de Broglie then

generalized the result to include any free particle moving at any velocity v, instead

of only photons. The de Broglie relation, as Equation (3.20) is called, predicted that

matter (particularly electrons) might exhibit wavelike behavior. His thesis, entitled

“Researches on the Quantum Theory,” was reviewed by Einstein and was one of the

shortest doctoral dissertations in history. The wave-particle duality of matter was
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3.4 IMPLICATIONS OF WAVE-PARTICLE DUALITY 59

so revolutionary that Nobel laureate Max von Laue was quoted as saying, “If that
turns out to be true, I’ll quit physics.”

E = mc2 (3.19)

𝜆 = hc

E
= h

mc
= h

mv
= h

p
(3.20)

Nonetheless, experimental confirmation was not far behind. Only 2 years later,
Davisson and Germer were the first to observe the wavelike properties of mat-
ter. Upon firing a beam of electrons at a nickel crystal, the researchers observed
a diffraction pattern emerging from the other side of the crystal. Feynman likened
the experiment to a modern-day double-slit experiment, where the bullets from a
machine gun, fired one at a time through two closely spaced holes somehow man-
aged to interfere with each other. The only plausible explanation was if one assumed
that the electrons had wave-particle duality. Incidentally, Davisson shared the 1937
Nobel Prize in physics with George Paget Thomson, who independently discovered
the phenomenon of electron diffraction. In one of the strangest ironies in the history
of science, G. P. Thomson received the Nobel Prize for his experiments proving that
the electron behaved like a wave, while his father J. J. Thomson won the 1906 Nobel
Prize for proving that the electron was a particle. De Broglie won his own Nobel
Prize in physics in 1929.

Example 3-8. Calculate the de Broglie wavelength of an electron traveling at

one-tenth the speed of light. Do the same for a Nolan Ryan fastball traveling at

100 mph. Comment on the results.

Solution. The de Broglie wavelength of an electron can be calculated from

Equation (3.20):

𝜆 = h

mv
=

(6.626 × 10−34 J ⋅ s)
(9.109 × 10−31 kg)(2.998 × 108 m∕s)

= 2.43 × 10−11 m

For a 142 g baseball traveling at roughly 100 mph:

v = 100 mi

h

(
1.609 km

1 mi

)(
103 m

1 km

)(
1 h

3600 s

)
= 44.7 m∕s

𝜆 = h

mv
=

(6.626 × 10−34 J ⋅ s)
(0.142 kg)(44.7 m∕s)

= 1.04 × 10−34 m

The wavelength of an electron is larger than its radius, while the wavelength

of the baseball is insignificant compared with the size of the ball. Therefore, the

wavelike nature of matter is only important for extremely small objects, such as

atoms, nucleons, and electrons.

The de Broglie relation provided some additional footing for the quantum
restriction postulate in the Bohr model of the atom. By assuming that the electron
exhibits wavelike properties, only those circular orbits for which the circumference
(2𝜋r) is equal to an integral multiple of the wavelength (n𝜆) will form a standing
wave, as shown in Figure 3.20. Thus, the quantization of angular momentum that
Bohr applied in the third postulate (Eq. 3.13) of his derivation follows naturally
from a wave-mechanical description of the electron, according to Equation (3.21).
Hence, the allowed Bohr orbits can be considered circular standing waves, such
as the ones depicted in this figure. The corresponding shapes of the vibrations
shown in Figures 3.7 and 3.13 can be obtained by snipping each circular orbit
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60 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.20
The first three (n = 1, 2, 3) de
Broglie waves superimposed on
the Bohr model of the atom.
[Blatt Communications.]

n = 2

n = 1

n = 3

and stretching the resulting string out between two fixed points in space. The

wavelike properties of electrons form the basis of electron microscopes. Using

these instruments, exceedingly short wavelengths of light can be used to probe the

sample by controlling the velocity of the electron with an applied voltage.

2πr = n𝜆 = nh

mv

l = mvr = nh

2π
(3.21)

In 1925, when he was only 23 years of age, Werner Heisenberg published his

principle of indeterminacy, more commonly known as theHeisenberg uncertainty prin-

ciple. According to the Heisenberg uncertainty principle, the wave-particle duality of

matter places an inherent limitation on one’s ability to simultaneously measure both

the position and the momentum (and hence the velocity) of an electron. In order

to precisely measure the position of an electron, one would need to bombard it

with a photon having a very short wavelength. Because shorter wavelengths imply

higher energies, the collision of the photon with the electron would impart a large

uncertainty in the momentum of the electron. In mathematical terms, the result is

expressed by Equation (3.22).

ΔxΔp ≥ h

4π
(3.22)

An appropriate analogy involves trying to photograph the headlights of a car

in a busy intersection at night. If a very short shutter speed is used, the position

of the car (or at least its leading edge) can be determined with a high degree of

precision. However, any calculation of the car’s momentum using this photograph

will have a large amount of error. On the other hand, one can measure the car’s

momentum by using a longer shutter speed and holding the aperture of the camera

open for a specified period of time. The resulting photograph will show a blurring of

the headlights, so that their exact position cannot be ascertained. It is important to

recognize that the Heisenberg principle has nothing at all to do with the limitations

of the equipment—in this case, the camera. Rather, it is a fundamental property of

the measurement itself.

Suppose that we were to add two sine waves having slightly different frequencies

together. The two waves will constructively interfere with each other at certain
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3.4 IMPLICATIONS OF WAVE-PARTICLE DUALITY 61

FIGURE 3.21
The addition of two (or more)
standing waves leads to a
beat pattern, where the
width of the pulse is inversely
related to the difference in
frequencies used in the linear
combination. The standing
waves for n = 4, n = 6, and n
= 5 are shown at the top of
the illustration. Addition of
the standing waves n = 5 and
n = 6 yields a beat pattern
having an uncertainty in x of
1.0, while addition of the
standing waves n = 4 and n =
6 yields a beat pattern having
an uncertainty in x of 0.5. In
general, Δx for any
superposition of two standing
waves will be inversely
proportional to Δn. Thus, in
order to localize the wave
function to a narrow region
in space, the difference in
energy between the standing
waves in the superposition
must increase, leading to a
larger uncertainty in the
momentum.

n = 4

n = 6

n = 5

n = (5 + 6)

n = (4 + 6)

points in time and then destructively interfere at different times, creating what is

known as a beat pattern, as shown in Figure 3.21.

The beat pattern consists of what is known as a pilot wave or a wave packet. As

indicated in the diagram, one of the ways to localize the wave packet into a narrow

region of space is to combine two waves that have vastly different wavenumbers

(the wavenumber 1/𝜆 is directly related to the momentum by a factor of h). Thus, in

order to minimize the uncertainty in the position, a wider range of wavelengths (or

a greater uncertainty in momentum) is required, as illustrated in Figure 3.22. This is

simply a qualitative restatement of the Heisenberg uncertainty principle.

Further, it can be shown that the larger the number of sine waves added

together, such that they are all arranged to be in phase with one another at time

t = 0, the more defined the wave packet will become. As shown in Figure 3.23, the

superposition of many sine waves produces a pulse of radiation having a measurable

pulse width. Suppose that we add together a very large number of sine waves

chosen from a distribution of frequencies that is ±5% of the center frequency 𝜐0,
such that Δ𝜐 = ±0.05𝜐0. If we define the uncertainty in time as the half-width at

half-maximum of the wave packet, then the uncertainty for this particular group

of sine waves will be Δt = 5, because about five cycles will occur within this

timeframe (half the length of the arrow). Thus, the product of the uncertainties is

given by Equation (3.23). Substitution of Equation (3.6) into Equation (3.23) yields

(a)

(b)

(c)

FIGURE 3.22
Illustration of the Heisenberg
uncertainty principle for a wave
packet. (a) A standing wave
having Δpx → 0 has Δx → ∞; (b)
the superposition of standing
waves having a nonzero but
finite Δpx has an intermediate
value of Δx as the wave packet
becomes defined in space; and
(c) the superposition of standing
waves where Δpx → ∞ causes Δx
→ 0 and localizes the wave
packet.
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62 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.23
The superposition of a large
number of sine waves having a
distribution of frequencies such
that Δ𝜐 = ±0.05𝜐0. The arrow
represents the full-width at
half-maximum; half of its length
represents the uncertainty in
time of the wave packet.
[Reproduced by permission from
Warren, W. The Physical Basis of
Chemistry, page 114, Copyright
Elsevier (1994).] –1
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Equation (3.24).

Δ𝜈Δt ≥ 1∕4 (3.23)

ΔEΔt ≥ h∕4 (3.24)

Because the form of each sine wave was defined by Equation (3.4), the quantity

x/𝜆 must behave in the same manner as 𝜐t. Thus, Δx Δ(1/𝜆) ≥ 1/4. Finally, substitution

of Equation (3.20) affords Equation (3.25), which is nearly identical to the Heisenberg

uncertainty relationship in Equation (3.22), the main difference being in the exact

manner in which the uncertainty is defined.

ΔxΔp ≥ h∕4 (3.25)

The Heisenberg uncertainty principle explains several interesting features of

atoms. For instance, electrons cannot exist in planar orbits around the nucleus, as

is so commonly depicted by the Bohr model of the atom. The reason for this is

because in a planar orbit the uncertainty in position perpendicular to the plane is

zero and therefore the momentum in that direction would become infinite. Likewise,

the uncertainty principle can explain why the electron in a hydrogen atom does not

collapse into the nucleus despite the fact that there is a strong electrostatic attraction

in that direction. As the electron’s orbit gets smaller, so does the uncertainty in its

position. Therefore, the uncertainty in its momentum (and also in its kinetic energy)

must necessarily increase.

The uncertainty principle can also be demonstrated using a modern-day version

of Young’s double-slit experiment. Consider that a beam of electrons is fired at a

screen having two narrow slits. A suitable detector is placed some distance behind

the screen in order to monitor the positions of the electrons. When one of the slits

is closed, the electrons striking the detector form a Gaussian distribution exactly

opposite the open slit, as might be expected. If this slit is then closed and the other

one opened, a second Gaussian distribution appears at the detector opposite the
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3.4 IMPLICATIONS OF WAVE-PARTICLE DUALITY 63

Electrons

Screen with
two slits

Optical
screen

Optical screen
(front view)

FIGURE 3.24
Modern-day version of the
double-slit experiment using a
beam of electrons. Even when
the electrons are fired one at a
time through the screen with
the slits, an interference pattern
develops on the optical screen.
[Reproduced from
http://commons.wikimedia.org
/wiki/File:Two-Slit_Experiment_
Electrons.svg (accessed
December 1, 2013).]

second slit. However, when a large number of electrons are fired at the screen

with both of the slits open, instead of just the sum of two Gaussians, the detector

records an interference pattern similar to the one shown in Figure 3.2. This is a

remarkable observation in and of itself. Somehow the electrons passing through the

two open slits have interfered with one another. Now suppose that the electron gun

is modulated so that it releases just a single electron at a time. At first, the pattern

observed at the detector appears completely random. But if we wait long enough

for a larger number of electrons to pass through one or the other slit (one at a time),

an astounding result is observed—the exact same interference pattern develops at

the detector, as shown in Figure 3.24. The only conclusion that can be drawn is that

the electron somehow interfered with itself as it passed through the barrier with

the two slits in it.

The key to understanding this seeming paradox is put forward in the super-

position principle, which is entirely a quantum mechanical concept. Consider the

apparatus shown in Figure 3.25. A beam of photons enters from the left and strikes

a beam splitter. Exactly one-half of the time the photon will be directed to the left

along translation state 1 toward a mirror, while the other half of the time it will

pass directly through the beam splitter along translation state 2. Regardless of the

pathway, the total distance that the photon travels before it returns to the beam

splitter and is sent to a detector is exactly the same. Furthermore, we can adjust

the intensity of the light beam so that only one photon at a time will pass through

Incoming beam

Translation state 1

Translation state 2

Mirror

50% mirror

Mirror

Interference pattern

x

I

Intensity
oscillates

FIGURE 3.25
Schematic of an optical
interference apparatus. [©
Michael D Fayer, Elements of
Quantum Mechanics, 2001, by
permission of Oxford University
Press, USA.]
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64 3 A BRIEF REVIEW OF QUANTUM THEORY

the apparatus. Because there is only one photon in the apparatus at a time, there is

no other photon with which to interfere. Nevertheless, an interference pattern is

still observed at the detector.

The superposition principle (also known as quantum entanglement) states that

whenever the photon is in one state, it can always be considered to be partly in each

of the two states. In other words, the photon actually exists in an indeterminate

state that is a linear combination of the two possible translational states, as shown by

Equation (3.26). The probability of measuring result T1 or T2 in a single measurement

depends on the relative weights of T1 and T2 in the superposition. The electrons in

the modern-day double-slit experiment act as a superposition of the two different

slits.

T = c1 T1 + c2 T2 (3.26)

One of the most important ramifications of the uncertainty principle is that it

brought about a radical change in the philosophy of science. Classical mechanics was

deterministic in nature; that is to say that if the precise position and momentum

of a particle or a collection of particles were known, Newton’s laws could be used

(at least in principle) to determine all the future behavior of the particle(s). The

uncertainty principle, however, tells us that there is an inherent limitation to how

accurately we can measure the two quantities simultaneously. Any observation of an

extremely small object (one whose wavelength is on the same magnitude or larger

than the particle itself) necessarily effects a nonnegligible disturbance to the system,

and thereby it influences the results. Einstein never liked the statistical nature of

quantummechanics, saying “God does not play dice with the universe.” Nonetheless,

the quantum mechanical model is a statistical one.

It is for this reason that the Bohr model of the atom is correct only for

one-electron systems such as hydrogen. For any multielectron system, such as

helium, if we chose to focus on one electron and to calculate the electrostatic

field that it felt as a result of its interactions with the nucleus and with the other

electron, we would encounter a situation known as the electron correlation problem.

While we might be able to locate the position of the other electron fairly precisely,

because of the uncertainty in its momentum we would have no way of predicting its

future behavior. The bottom line is that we no longer have a deterministic model

of the atom. As strange as it might seem, given the inherent limitations of our

observations, the best that we can do is to have a statistical view of the subatomic

world. We can say, for instance, that there will be a 50% chance that the second

electron will occupy a certain region of space. Hence, in the forthcoming discussion

of quantum mechanics, we change our terminology from electron “orbits” to

“orbitals,” or regions of space where there is simply a strong likelihood of finding

an electron. By virtue of its existence as a standing wave, the electron can exist

“everywhere at once” (excluding the nodes) with a probability that is somehow

related to its amplitude. If this sounds a little strange to you at this point, you are

probably not alone. As Bohr himself once cautioned: “If quantum mechanics hasn’t

profoundly shocked you, you haven’t understood it yet.” So take a moment to ask

yourself, “Are you profoundly shocked yet?”

3.5 POSTULATES OF QUANTUM MECHANICS

The quantum mechanical model of atomic structure is based on a set of postulates

that can only be justified on the basis of their ability to rationalize experimental

behavior. However, the foundations of quantum theory have their origins in the field

of classical wave mechanics. The fundamental postulates are as follows:
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3.5 POSTULATES OF QUANTUM MECHANICS 65

• Postulate 1: The state of a particle is completely described by a wave func-

tion Ψ, such that all the possible information that can be measured about

the particle (its position, momentum, energy, etc.) is contained in Ψ. The
Born interpretation of the wave function, which itself derives from the fact that

the intensity of light is proportional to the square of its amplitude, states that

Ψ*Ψ represents the probability density that the particle will exist in the volume

element d𝜏 at point (x, y, z). Recall that the Heisenberg uncertainty principle

states that we cannot measure the exact position of the particle—only a sta-

tistical probability can be obtained. The quantity Ψ* is the complex conjugate

of the wave function Ψ. Thus, for example, if Ψ is the complex function x + iy,

Ψ* will equal x − iy. The derivative 𝜕𝜏 is an infinitely small, three-dimensional

volume element. Because Ψ*Ψ represents a probability density, Ψ and Ψ*
must both be single-valued, continuous, finite, and smoothly varying. Fur-

thermore, the integral of Ψ*Ψ over all space must be unity, as shown in

Equation (3.27), because the total probability of finding the particle some-

where has to be 100%. Wave functions that satisfy Equation (3.27) are said

to be normalized.

∫
∞

−∞
Ψ∗Ψ 𝜕𝜏 = 1 (3.27)

• Postulate 2: For every physically observable variable in classical mechanics,

there exists a corresponding linear, Hermitian operator in quantum mechan-

ics. Examples are shown in Table 3.2, where the ^ symbol indicates a quantum

mechanical operator and ℏ = h/2𝜋. A Hermitian operator is one which satisfies

Equation (3.28).

∫ Ψi
∗ÂΨj𝜕𝜏 = ∫ Ψj∗ÂΨi 𝜕𝜏 (3.28)

Many quantum mechanical operators will define an eigenvalue equation.

An eigenfunction is any function that when operated on yields back the origi-

nal function times a constant. That constant is known as the eigenvalue. The

requirement that each operator be Hermitian therefore guarantees that the

eigenvalues will always be real numbers. Any two eigenfunctions that have the

same eigenvalue are said to be degenerate and will possess the same energy.

As a result of the requirement that quantum mechanical operators be linear,

any linear combination of degenerate wave functions will also be an accept-

able solution. Furthermore, any well-behaved function (one subject to the

same restrictions as Ψ was in Postulate 1) can be expanded as a linear com-

bination of eigenfunctions. This property is analogous to the superposition of

standing waves. Eigenfunctions that are not degenerate will be orthogonal to

each other, according to Equation (3.29).

∫ Ψi
∗Ψj𝜕𝜏 = 0, i ≠ j (3.29)

• Postulate 3: In any measurement where an exact solution can be obtained, the

only values that will ever be observed are the eigenvalues an that satisfy the

eigenvalue equation given by Equation (3.30). This postulate is the one that

is responsible for the quantization of energy.

ÂΨn = anΨn (3.30)

Although measurements must always yield an eigenvalue, the state does

not initially have to be an eigenstate of Â. Any arbitrary state can be expanded

Pfennig, Brian W.. Principles of Inorganic Chemistry, John Wiley & Sons, Incorporated, 2015. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=1895675.
Created from inflibnet-ebooks on 2021-02-09 22:36:21.

C
op

yr
ig

ht
 ©

 2
01

5.
 J

oh
n 

W
ile

y 
&

 S
on

s,
 In

co
rp

or
at

ed
. A

ll 
rig

ht
s 

re
se

rv
ed

.



66 3 A BRIEF REVIEW OF QUANTUM THEORY

TABLE 3.2 Classical mechanical observables and their quantum mechanical operators.

Observable Operator
Type Symbol Symbol Operation

Position x X̂ Multiply by x
Position vector r R̂ Multiply by r

Momentum px P̂ −iℏ 𝜕

𝜕x

Momentum vector p P̂ −iℏ
(
i
𝜕

𝜕x
+ j

𝜕

𝜕y
+ k

𝜕

𝜕z

)
Kinetic energy Kx K̂x − ℏ2

2m

𝜕2

𝜕x2

K K̂

− ℏ2

2m

(
𝜕2

𝜕x2
+ 𝜕2

𝜕y2
+ 𝜕2

𝜕z2

)
= − ℏ2

2m
∇2

Potential energy V(x) V̂(x) Multiply by V(x)
V(x,y,z) V̂(x, y, z) Multiply by V(x,y,z)

Total energy E Ĥ − ℏ2

2m
∇2 + V(x, y, z)

Angular momentum Lx L̂x = −iℏ
(
y
𝜕

𝜕z
− z

𝜕

𝜕y

)
Ly L̂y = −iℏ

(
z
𝜕

𝜕x
− x

𝜕

𝜕z

)
Lz L̂z = −iℏ

(
x
𝜕

𝜕y
− y

𝜕

𝜕x

)

as a linear combination in the complete set of eigenfunctions, as shown in

Equation (3.31).

Ψ =
n∑
i

ci Ψi (3.31)

• Postulate 4: If Ψ is not an eigenfunction of the quantum mechanical operator,

then a series of measurements on identical systems of particles will yield a

distribution of results, such that Equation (3.32) will describe the average

(or “expectation”) value of the observable (assuming the wave function is

normalized).

< a >= ∫
∞

−∞
Ψ∗ ÂΨ 𝜕𝜏 (3.32)

• Postulate 5: The wave function of a particle evolves in time according to the

time-dependent Schrödinger equation, given by Equation (3.33).

− ℏ2

2m
∇2Ψ + VΨ = ĤΨ = −iℏ𝜕Ψ

𝜕t
(3.33)
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3.6 THE SCHRÖDINGER EQUATION 67

3.6 THE SCHRÖDINGER EQUATION

Quantum mechanics is a model that is based entirely on postulates that explain

the observations associated with atomic and subatomic particles. As such, the

Schrödinger equation cannot be derived from first principles. However, what

follows is a rationale for the Schrödinger equation. The classical wave equation in

one-dimension was given by Equation (3.3) and is reproduced in Equation (3.34)

with the substitution of Ψ for y.

𝜕2Ψ
𝜕x2

= 1

v2
𝜕2Ψ
𝜕t2

(3.34)

A general solution to the Schrödinger equation is given by Equation (3.35).

Ψ(x, t) = Ae
2πi

(
x
𝜆
−𝜈t

)
(3.35)

Example 3-9. Prove that Equation (3.35) is a solution to Equation (3.34).

Solution. Taking the first partial derivative of Ψ with respect to x and t gives

the following two equations:

𝜕Ψ
𝜕x

= 2πi
𝜆
Ae

2πi
(
x
𝜆
−𝜈t

)
𝜕Ψ
𝜕t

= −2πi𝜈Ae2πi
(
x
𝜆
−𝜈t

)

Taking the second partial derivative with respect to each independent vari-

able yields

𝜕2Ψ
𝜕x2

= −
(
2π
𝜆

)2

Ae
2πi

(
x
𝜆
−𝜈t

)
= −

(
2π
𝜆

)2

Ψ

𝜕2Ψ
𝜕t2

= −(2π𝜈)2Ae2πi
(
x
𝜆
−𝜈t

)
= −(2π𝜈)2Ψ

After substituting into Equation (3.34):

−
(
2π
𝜆

)2

Ψ = −(2π𝜈)2

v2
Ψ

which yields the following after taking the square root of both sides and cancelling:

1

𝜆
= 𝜈

v

Because this is just a reformulation of Equation (3.1), Equation (3.35) is an

acceptable solution to Equation (3.34). In fact, it is the most general solution.

Substituting the de Broglie relation given by Equation (3.20) into the second

partial derivative of Equation (3.35) with respect to x yields Equation (3.36).

𝜕2Ψ
𝜕x2

= −4π2
𝜆2

Ψ = −4π2m2v2

h2
Ψ (3.36)
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68 3 A BRIEF REVIEW OF QUANTUM THEORY

Given that the kinetic energy K = (1/2)mv2 and the total energy E = K + V,

where V is the potential energy, Equation (3.36) can be rewritten as

𝜕2Ψ
𝜕x2

= −8π2mK
h2

Ψ = −8π2m
h2

(EΨ − VΨ) (3.37)

Solving for the first partial derivative of Equation (3.35) with respect to time

and substituting the Planck formula E = h𝜈, we obtain Equation (3.38):

𝜕Ψ
𝜕t

= −2πi𝜈Ψ = −2πiE
h

Ψ (3.38)

Solving both Equations (3.37) and (3.38) for EΨ and setting them equal yields

Equation (3.39):

EΨ = − h2

8π2m
𝜕2Ψ
𝜕x2

+ VΨ = − h

2πi
𝜕Ψ
𝜕t

(
i

i

)
= ih

2π
𝜕Ψ
𝜕t

(3.39)

Finally, some simple rearrangement yields the time-dependent Schrödinger

equation in one-dimension, given by Equation (3.40).

− h2

8π2m
𝜕2Ψ
𝜕x2

+ VΨ = ih

2π
𝜕Ψ
𝜕t

(3.40)

Generalizing from one-dimension to three-dimensions and substituting

del-squared as the operator yields Equation (3.41), the time-dependent Schrödinger

equation in three-dimensions, which is the same as Equation (3.33).

− ℏ2

2m
∇2Ψ + VΨ = HΨ = iℏ

𝜕Ψ
𝜕t

,

where ∇2 = 𝜕2

𝜕x2
+ 𝜕2

𝜕y2
+ 𝜕2

𝜕z2
(3.41)

For stationary states, analogous to Bohr’s stationary orbits where the potential

energy is independent of time, Ψ(x, y, z, t) can be factored into a time-dependent

term 𝜙(t) and a time-independent term 𝜓(x, y, z), as shown in Equation (3.42).

Ψ(x, y, z, t) = 𝜓(x, y, z)𝜙(t) (3.42)

Taking Equation (3.41) and dividing both sides by 𝜓𝜙 yields Equation (3.43).

− ℏ2

2m

∇2𝜓𝜙

𝜓𝜙
+ V𝜓𝜙

𝜓𝜙
= iℏ

𝜓

𝜓𝜙

d𝜙

dt
(3.43)

Because the del-squared operator acts only on position coordinates, both it and

the potential energy term on the left-hand side of Equation (3.43) are independent

of time and the 𝜙(t)s cancel on this side. Likewise, because the operator on the

right-hand side of Equation (3.43) is independent of the coordinates, the 𝜓(x, y, z)s

cancel on the right-hand side. Setting both sides equal to the separation constant (a

scalar quantity) yields Equation (3.44).

− ℏ2

2m

∇2𝜓

𝜓
+ V𝜓

𝜓
= iℏ

𝜙

d𝜙

dt
= E (3.44)
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3.6 THE SCHRÖDINGER EQUATION 69

Rearrangement of Equation (3.44) and substitution of the symbol for the

Hamiltonian operator yields the familiar time-independent form of the Schrödinger

equation shown in Equation (3.45).

− ℏ2

2m
∇2𝜓 + V𝜓 = Ĥ𝜓 = E𝜓 = iℏ

𝜙

d𝜙

dt
(3.45)

The time-independent Schrödinger equation in one-dimension is a linear,

second-order differential equation having constant coefficients. A general method

for solving this type of differential equation is to rearrange the equation into a

quadratic of the form shown in Equation (3.46), where y′′ and y′ are the second and

first derivatives, respectively, with respect to x.

y′′ + py′ + qy = 0 (3.46)

Because we are looking for a function whose first and second derivatives yield

back the function times a constant, one logical solution would be an exponential

function, such as y = esx. In this case, y′ = sesx and y′′ = s2esx, so that substitution

into Equation (3.46) yields Equation (3.47). When both sides of Equation (3.47) are

divided by esx, the result is known as the auxiliary equation and is shown in (3.44).

s2esx + psesx + qesx = 0 (3.47)

s2 + ps + q = 0 (3.48)

Because Equation (3.48) is a quadratic, there are two independent solutions to

the auxiliary equation. Thus, the most general solution to the differential equation

given by Equation (3.46) is a linear combination, as shown in Equation (3.49), where

a and b are weighting constants.

y(x) = a es1x + b es2x (3.49)

In this context, the one-dimensional Schrödinger equation can be rewritten as

Equation (3.50).
d2𝜓

dx2
+ 2m(E − V)𝜓

ℏ2
= d2𝜓

dx2
+ 𝛽2𝜓 = 0 (3.50)

After substitution, the auxiliary equation becomes:

(s2 + 𝛽2) = 0 (3.51)

Therefore, s2 = −𝛽2, or s = ±i𝛽 and the general solution to time-independent

Schrödinger equation is given by Equation (3.52).

𝜓(x) = aei𝛽x + be−i𝛽x (3.52)

Using Euler’s formula that ei𝛽x = cos(𝛽x) + isin(𝛽x), an alternative form of

Equation (3.52) is Equation (3.53).

𝜓(x) = A cos(𝛽x) + B sin(𝛽x) (3.53)

Whether it is more convenient to use the exponential form given in

Equation (3.52) or the trigonometric form given in Equation (3.53) will depend on

the specific nature of the problem at hand.
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70 3 A BRIEF REVIEW OF QUANTUM THEORY

One final point about wave functions is the requirement that they be normalized.

Depending on the particular problem, the solution to Equation (3.53) might yield an

eigenfunction where the integral of 𝜓*𝜓 d𝜏 over all space is not equal to one. In

this case, an appropriate constant c must be found such that the wave function can

be normalized. The normalization process is shown in Equations (3.54)–(3.56).

∫
∞

−∞
𝜓∗𝜓 𝜕𝜏 = ∫

∞

−∞
|𝜓|2𝜕𝜏 = N (3.54)

∫
∞

−∞
|c𝜓|2𝜕𝜏 = c2N = 1 (3.55)

c = 1∕
√
N (3.56)

3.7 THE PARTICLE IN A BOX PROBLEM

Ultimately, our goal is to solve the Schrödinger equation in three-dimensions for the

electron in the hydrogen atom. This electron is subject to a potential energy term

that involves a Coulombic attraction toward the nucleus. However, the solution to

this differential equation is not a trivial one.We therefore choose a somewhat similar,

but simpler, problem—the particle in a box—to demonstrate the procedure and to

illustrate some of the principles of quantum mechanics. We then extrapolate those

results to the hydrogen atom in a later chapter.

Consider an electron that is trapped in a one-dimensional box of length a, such

as the one shown in Figure 3.26. Inside the box, the electron experiences zero poten-

tial energy. However, the walls of the box are infinitely steep, so that the potential

energy of an electron is infinite outside the box.

The wave function is zero everywhere outside the box. Inside the box,

the time-independent Schrödinger equation in one-dimension reduces to

Equation (3.57), which has the trigonometric solution given by Equation (3.53),

where 𝛽 =
√
2mE∕ℏ.

d2𝜓

dx2
+ 2m

ℏ2
E𝜓 = 0 (3.57)

The boundary conditions are such that the wave function approaches zero at

both walls of the box. In other words, 𝜓(0) = 𝜓(a) = 0. The condition that 𝜓(0) = 0

implies that A= 0, because B sin(0)= 0. The condition that𝜓(a)= 0 therefore implies

that B sin(𝛽a) = 0. There are two conditions under which this will be true: if B = 0

or if sin(𝛽a) = 0. If B = 0, then the wave function would never exist, because A is also

zero. Therefore, sin(𝛽a) must equal zero; and this will only be true when 𝛽a = n𝜋,
where n is any integer. Solving Equation (3.58) for the energy yields the results given

by Equation (3.59). Because the energy must always be greater than or equal to zero,

n must equal a non-negative integer. Furthermore, if n = 0, E would also equal zero,

and the two roots of the auxiliary equation would be identical. Thus, n = 0 is not

an acceptable solution and the quantum number, n, must take on a positive value.

FIGURE 3.26
Sketch of the one-dimensional
particle in a box problem.

V = ∞ V = ∞V = 0

0 a
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3.7 THE PARTICLE IN A BOX PROBLEM 71

After substitution for A and 𝛽 into Equation (3.53), the acceptable solutions to the
particle in a box problem are given in Equation (3.60).

𝛽 =
√
2mE

ℏ
= nπ

a
(3.58)

E = n2ℏ2π2
2ma2

= n2h2

8ma2
, where n = 1, 2, 3, … (3.59)

𝜓(x) = B sin
(
nπx
a

)
(3.60)

Example 3-10. Use the normalization procedure discussed in the previous

section to prove that the value of B in Equation (3.60) is (2/a)1/2.

Solution. In the process of normalization, the integral of |𝜓 |2 d𝜏 over all space

is determined to be N. By substitution of Equation (3.60) for 𝜓 , the following

integral must be evaluated:

B2∫
a

0

sin2
(
nπx
a

)
dx = N

Consultation of an integral table yields the following analytic solution:

∫
a

0

sin2 (kx) dx = a

2
− 1

4k
sin(2ka)

Because sin(2kx) = sin(2n𝜋x/a) = sin(n′𝜋) = 0 for all n′, the original integral

reduces to B2 (a/2) = N. Because N must equal 1 in order for the wave function

in Equation (2.60) to be normalized, B must therefore equal (2/a)1/2. Thus, the

normalized solutions to the one-dimensional particle in a box problem are

𝜓(x) =
√

2

a
sin

(
nπx
a

)

The acceptable solutions to the one-dimensional particle in a box problem are
sketched in Figure 3.27(a) for the first several quantum numbers. The Born interpre-
tation of the wave function states that the product 𝜓*𝜓 represents the probability
density of finding the electron in a finite region of space. Because the Born interpre-
tation of the wave function is |𝜓 |2, this function is shown in Figure 3.27(b).

Three features are immediately evident:

1. The energy is quantized and it increases as the square of n.

2. For all n > 1, there are n−1 nodal regions of space where there is zero
probability that the electron will exist.

3. When n is infinite, the shape of the wave function approaches that of a straight
line. The peaks and valleys of the standing wave all blur together into a single
continuum. Hence, the quantum mechanical model approximates the classical
one at very large values of n, a property which is known as the correspondence
principle. In order for any new theory of the atom to be valid, it must not
only explain and predict new behavior but it must also incorporate all the
experimental evidence that preceded it.
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72 3 A BRIEF REVIEW OF QUANTUM THEORY

FIGURE 3.27
The first of several solutions to
the particle in a box problem
showing (a) 𝜓(x) and (b) |𝜓(x)|2,
along with their corresponding
energies. [Copyright University
Science Books, Mill Valley, CA.
Used with permission. All rights
reserved. McQuarrie, D. A.;
Simon, J. D. Physical Chemistry:
A Molecular Approach, 1997.]
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Example 3-11. Prove that 𝜓(x) =
√

2

a
sin

(
nπx
a

)
is an acceptable solution to the

Schrödinger equation.

Solution. The time-independent Schrödinger equation in one-dimension is

given by Equation (3.45):

− ℏ2

2m

d2𝜓

dx2
+ V𝜓 = Ĥ𝜓 = E𝜓

Taking the first and second derivatives of Equation (3.45) yields

d𝜓

dx
=

(
nπ
a

)√
2

a
cos

(
nπx
a

)
d2𝜓

dx2
= −

(
nπ
a

)2
√

2

a
sin

(
nπx
a

)
= −n

2π2
a2

𝜓

Because V = 0 inside the box, substitution of the second derivative into the

Schrödinger equation yields

− ℏ2

2m

n2π2
a2

𝜓 = E𝜓

Substitution for ℏ and division of both sides by 𝜓 gives the expected result:

E = n2h2

8ma2
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3.7 THE PARTICLE IN A BOX PROBLEM 73

Example 3-12. Using Postulate 4, show that the average position <x> of the

electron in the one-dimensional particle in a box problem lies exactly in the

center of the box.

Solution. The expectation value of position, <x> is given by Equation (3.32):

⟨x⟩ = ∫
a

0

𝜓 ∗ x𝜓 d𝜏 = 2

a∫
a

0

x sin2
(
nπx
a

)
dx

Using a table of integrals:

∫
x

0

x sin2(kx)dx = x2

4
− x sin(2kx)

4k
− cos(2kx)

8k2

Because k = n𝜋/a, sin(2ka) = sin(2n𝜋) = sin(0) = 0 and cos(2ka) = cos(2n𝜋)
= cos(0) = 1. Therefore, the integrand reduces to

∫
x

0

x sin2(kx)dx = x2

4
− 1

8k2
−

(
0

4
− 1

8k2

)
= a2

4

Substitution into the expectation value for x yields

⟨x⟩ = 2

a

(
a2

4

)
= a

2
or in the exact middle of the box

Because the hydrogen atom is a three-dimensional problem, let us next consider

what happens when the particle is confined to a rectangular parallelepiped having the

dimensions a, b, and c, as shown in Figure 3.28.

Inside the box, where the potential energy is zero, the time-independent

Schrödinger equation in three-dimension is given by Equation (3.45). Separation of

the variables yields Equation (3.61):

𝜓(x, y, z) = X(x) Y(y) Z(z) (3.61)

V = ∞

V = ∞

V = ∞

V = 0

a

b

c

x

y

z

FIGURE 3.28
The particle in a
three-dimensional box problem,
where the box has dimensions of
a, b, and c.
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74 3 A BRIEF REVIEW OF QUANTUM THEORY

Substitution into Equation (3.45), followed by division by X(x)Y(y)Z(z) gives
Equation (3.62):

− ℏ2

2m

1

X(x)
d2X

dx2
− ℏ2

2m

1

Y(y)
d2Y

dy2
ℏ2

2m

1

Z(z)
d2Z

dz2
= E (3.62)

Because each term on the left-hand side of Equation (3.62) is a function of a
single variable, all three terms must be equal to a constant in order for the equation
to be true at all values of x, y, and z. Thus, Equation (3.62) can be simplified as
Equation (3.63):

Ex + Ey + Ez = E (3.63)

The boundary conditions are X(0) = X(a) = Y(0) = Y(b) = Z(0) = Z(c) = 0.
Each term in Equation (3.62) therefore reduces to the same form as the particle in
a one-dimensional box, such that Equations (3.64) and (3.65) result:

𝜓(x, y, z) = A sin
(
nπx
a

)
B sin

(
nπx
b

)
C sin

(
nπx
c

)
(3.64)

E = ℏ2

2m

(
n2x

a2
+
n2y

b2
+
n2z

c2

)
(3.65)

Normalization of Equation (3.65) yields a value of (8/abc)1/2 for the conglomer-
ate constant ABC.

The first several energy levels for the three-dimensional particle in a box prob-
lem (where a = b = c) are shown in Figure 3.29, where the energy axis has units of
h2/8 ma2. Many of the energy levels are degenerate—having more than one accept-
able set of quantum numbers at the same energy. For example, there are three ways
to have the sum nx

2 + ny
2 + nz

2 = 6: nx, ny, nz = 2, 1, 1; 1, 2, 1; and 1, 1, 2. As a

result, all three wave functions will have the same energy, where the E = 6(h2/8 ma2)
energy level is said to be triply degenerate. The degeneracy is removed, however, if
the symmetry of the box is lowered, so that it is no longer a cube: a ≠ b ≠ c. Con-
sider the case where b = (1/a)1/2 and c = (1/a)1/3. The energies of the 2, 1, 1; 1, 2, 1;
and 1, 1, 2 sets of quantum numbers are now 7(h2/8 ma2), 8(h2/8 ma2), and 9(h2/8
ma2). This is the first of many examples in this textbook where we will find that the
symmetry of an object greatly influences its physical and chemical properties.

FIGURE 3.29
The relative energies (in units of
h2/8 ma2) for the
three-dimensional particle in a
box having sides with lengths a
= b = c. The energy level labels
list the three quantum numbers
nx, ny, and nz in that order.
Notice that many of the energy
levels are degenerate.
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3.8 THE HARMONIC OSCILLATOR PROBLEM 75

3.8 THE HARMONIC OSCILLATOR PROBLEM

A second common problem that occurs in chemistry is given by the harmonic oscilla-

tor model. Consider a block of mass m attached to a spring, as shown in Figure 3.30.

If the other end of the spring is attached to a fixed point and the mass is displaced

from its equilibrium position, its motion will oscillate in time. The harmonic oscillator

problem is important in quantum chemistry because, to a certain extent, it models

the behavior of nucleons in the nucleus, the motions of atoms in metallic solids, and

the vibrations in polyatomic molecules. The periodic behavior of a harmonic oscil-

lator can also be described by the angular motion of a pendulum swinging in the

xy plane, as shown in Figure 3.31. The pendulum swings through an arc of length 𝜃
with an angular velocity 𝜔 that is equal to 2𝜋 radians/sec, such that Equation (3.66)

describes the relationship between frequency and the angular velocity.

𝜈 = 2π
𝜔

(3.66)

Using Hooke’s law, the restoring force for the mass on the spring in Figure 3.30

is given by Equation (3.67). Taking the integral of the force with respect to position

yields the potential energy in Equation (3.68). Setting the force equal to Newton’s

second law yields Equation (3.69), which rearranged becomes Equation (3.70). This

is a second-order differential equation with constant coefficients and it can therefore

m

mg

Fk

FIGURE 3.30
Harmonic oscillator model
employing a mass m affixed to a
spring having a force constant k.
[Attributed to Svjo, reproduced
from http://en.wikipedia.org
/wiki/Hooke’s_law (accessed
December 1, 2013).]

Amplitude

Massless rod

Massive bob
Equilibrium
position

Bob’s
trajectory

Frictionless pivot

θ

FIGURE 3.31
Harmonic motion of a
pendulum. [Reproduced from
http://en.wikipedia.org/wiki
/Pendulum (accessed Decemebr
1, 2013).]
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76 3 A BRIEF REVIEW OF QUANTUM THEORY

be solved using the auxiliary equation method described in the previous section. The

general solution to Equation (3.70) in trigonometric form is given by Equation (3.53).

The boundary condition that x(0) = L, where L is the maximum distance that the

mass was stretched from its equilibrium position implies that the second term in

Equation (3.53) is zero and A = L and therefore the solution to Equation (3.70)

reduces to Equation (3.71).

F = −kx (3.67)

V(x) = −∫ Fdx = −∫ kxdx =1

2
kx2 (3.68)

F(x) = −kx = m
d2x

dt2
(3.69)

d2x

dt2
+ k

mx
= 0 (3.70)

x(t) = A cos(𝛽t) = L cos(𝜔t),

where 𝜔 =
√

k

m
(3.71)

Substituting the classical potential energy into the Schrödinger equation in

one-dimension gives Equation (3.72). Following rearrangement and substitution of

𝜔2 = k/m, Equation (3.73) results.

− ℏ2

2m

d2𝜓

dx2
+ 1

2
kx2𝜓 = E𝜓 (3.72)

d2𝜓

dx2
+

(
2mE

ℏ2
− 𝜔2m2x2

ℏ2

)
𝜓 = 0 (3.73)

This second-order differential equation does not have constant coeffi-

cients (because of the x2 term) and it cannot be solved in the same manner as

Equation (3.57) using the auxiliary equation method. The solutions to the quantum

harmonic oscillator problem are not trivial and will be presented here without

proof. For a rigorous, but lucid, description of the calculus involved in solving

Equation (3.73), the interested reader is referred to Fayer’s Elements of Quantum

Mechanics. The first few solutions, which are based on Hermite polynomials, are

given by Equations (3.74)–(3.77), where 𝛼 = m𝜔∕ℏ, y =
√
𝛼x, and graphs of the

corresponding wave functions are shown in Figure 3.32.

Ψ0 =
(
𝛼

π

)1∕4
e−y

2∕2 (3.74)

Ψ1 =
(
𝛼

π

)1∕4√
2y e−y

2∕2 (3.75)

Ψ2 =
(
𝛼

π

)1∕4 1√
2
(2y2 − 1)e−y2∕2 (3.76)

Ψ3 =
(
𝛼

π

)1∕4 1√
3
(2y3 − 3y)e−y2∕2 (3.77)

There are several very important features to note in Figure 3.32. First of all,

according to classical mechanics, the mass on the end of the spring can have any

energy, while the quantum mechanical harmonic oscillator must have the discrete

energy levels given by Equation (3.78). Second, the potential energy of the mass will
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–4 –2

1

2

3

4

5

E

x2/2

Ψ4

Ψ3

Ψ2

Ψ1

Ψ0

2 4
x

FIGURE 3.32
Solutions to the
one-dimensional Schrödinger
equation for the harmonic
oscillator model. [Figure created
by Oscar Castillo-Felisola using
Sagemath. This figure is licensed
under a Creative Commons
Attribution-ShareAlike 3.0
Unported License.]

oscillate back and forth along the bottom of the parabola in Figure 3.32 in much the

same way as the bob on the end of the pendulum will swing back and forth through

its arc. Using classical mechanics, the oscillator will be moving faster in the center

of its arc and therefore it will spend the least amount of time at the bottom of the

potential energy well. The exact opposite is observed for the quantum mechanical

harmonic oscillator—the probability density is greatest in the v = 0 (lowest energy)

level at the exact center of the potential well. Third, while it is entirely possible for

the classical oscillator to have zero energy (in fact this occurs every time the mass

is restored to its equilibrium position), the quantum mechanical harmonic oscillator

cannot be zero. This is due to the fact that if the potential energy were exactly zero,

the position of the mass would be well defined to be at the center of the potential

and the momentum would be well defined as exactly zero. This would violate the

Heisenberg uncertainty principle. Fourth, it should be noted that the wave functions

extend beyond the classical barrier for the potential energy (in other words, they

leak outside of the parabola into the classically forbidden zone). In the limit of a very

large v, as shown in Figure 3.33, the quantum harmonic oscillator spends more of

–6 –4 –2 0 2 4 6

Ψ *Ψ

FIGURE 3.33
The probability function 𝜓*𝜓 for
the harmonic oscillator with
v = 10, showing how the
potential energy for the
quantum mechanical harmonic
oscillator approaches that of the
classical harmonic oscillator for
very large values of v. [© Michael
D Fayer, Elements of Quantum
Mechanics, 2001, by permission
of Oxford University Press, USA.]
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78 3 A BRIEF REVIEW OF QUANTUM THEORY

its time near the edges of the parabola, in agreement with the classical observation

that the oscillator has a higher probability at the extremes than in the center of

the potential energy well. This correlation with classical mechanics at very large

values of n was also observed in the particle in the box model and is known as the

correspondence principle.

Ev = ℏ𝜔
(
v + 1

2

)
, where v = 0, 1, 2, … (3.78)

EXERCISES

3.1. Fluorescent light bulbs often consist of the line spectrum of Hg. Mercury has two

strong atomic emission lines in the UV at 254 and 366 nm. (a) Calculate the frequency

corresponding with each of these two wavelengths. (b) Calculate the energy of each

line in units of joules.

3.2. Given that the (first) ionization energy of K is 419 kJ/mol, answer the following:

(a) What is the maximum wavelength of light (in nm) necessary to ionize K metal?

(b) Calculate the velocity of the ejected electron when a photon of UV light with 𝜆 =
235 nm strikes the surface of K metal in an evacuated chamber.

3.3. Prove that y = Ae2𝜋i𝜐tx + Be−2𝜋i𝜐tx is a solution to the one-dimensional wave equation

given by Equation (3.3).

3.4. Indicate which of the following are eigenfunctions: (a) d2/dx2 (cos ax), (b) d/dt (eint),

(c) d/dy (y2 − 2y), (d) 𝜕/𝜕y (x2 e6y), (e) d/dx (sin ax). For each eigenfunction, determine

the eigenvalue.

3.5. At what wavelength does the maximum in the cosmic background radiation from the

Big Bang occur given that the average temperature of the universe is 2.725 K? In which

region of the electromagnetic spectrum does this occur?

3.6. Given that the (first) ionization energy of Cs is 376 kJ/mol, answer the following:

(a) What is the maximum wavelength of light (in nm) necessary to ionize Cs metal?

(b) Calculate the velocity of the ejected electron when a photon of UV light with

𝜆 = 235 nm strikes the surface of Cs metal in an evacuated chamber.

3.7. The Paschen series of lines in the line spectrum of hydrogen occur in the near-IR.

(a) Calculate the wavelength (in nm) of the series limit for the Paschen series of lines in

the line spectrum of hydrogen. (b) The frequency of one line in the Paschen series of

hydrogen is 2.34 × 1014 Hz. Using the Bohr model of the atom with its circular orbits,

sketch this specific electronic transition.

3.8. Use the Rydberg equation to calculate the wavelengths of the first three lines in the

Brackett series of the line spectrum of hydrogen.

3.9. Beams of neutrons are often used to obtain images of lightweight atoms in molecules.

What velocity of neutrons is necessary to make a neutron beam having a wavelength

of 0.0150 pm? (You will need to look up the rest mass of a neutron.)

3.10. Calculate the de Broglie wavelength for each of the following: (a) an electron with a

kinetic energy of 120 eV, (b) a proton with a kinetic energy of 120 eV.

3.11. Calculate the velocity and kinetic energy of an electron in the first Bohr orbit

(a0 = 52.9 pm) of a hydrogen atom.

3.12. Using the Bohr model of the atom, answer the following questions: (a) Calculate the

wavelength (nm) for the longest wavelength line of the Paschen series (nf = 3). (b) Given

that the energy of a line in the hydrogen spectrum is 1.94 × 10−18 J, draw a picture of

the Bohr model of the atom showing this electronic transition.

3.13. Scientists have demonstrated the diffraction of matter for particles as large as a Bucky-

ball (C60). Given that the observed de Broglie wavelength for a beam of Buckyballs was

0.0025 nm, calculate the velocity that the Buckyballs were travelling.
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3.14. One of the shortest LASER pulses ever generated was 100 as with an uncertainty

of 12 as. Using the Heisenberg uncertainty principle, calculate the uncertainty in the

frequency of the LASER pulse.

3.15. If it were possible to locate the position of an electron to within 10 pm, what would

be the uncertainty in v?

3.16. Calculate the energy difference (in units of cm−1) between the n = 2 energy level and

the n = 1 energy level for the particle in a box model with length 1.0 nm.

3.17. To a first approximation, the six pi electrons in the molecule hexatriene,

CH2=CH–CH=CH–CH=CH2, can be considered using the particle in a box

model, where the length of the box is equal to the distance between the two end C

atoms (or 867 pm). Calculate the energies for the first four energy levels using this

model. Given that each energy level can hold two electrons in the ground state, the

highest filled energy level will have n =3 and the lowest unfilled energy level will have

n = 4. Calculate the wavelength of an electronic transition between the n = 3 and the

n = 4 energy levels.

3.18. The Bohr radius for the n = 1 level in hydrogen atom is 52.9 pm. Assuming that a =
2r for the one-dimensional particle in a box model, calculate the energies for the first

three quantum levels in units of megajoules per mole.

3.19. What is the degeneracy of the fifth lowest energy level for a particle in a box with

lengths a = b = 1.0 nm and c = 2.0 nm?

3.20. Given that the force constant for a harmonic oscillator is 250 N/m, calculate the fun-

damental vibrational frequency and the zero-point energy for this vibrational mode.
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